CARCINOMA DELLA TIROIDE 2023 10 FEBBRAIO 2023 MILANO Istituto Nazionale dei Tumori

Responsabili Scientifici Prof.ssa Laura Fugazzola Università degli Studi di Milano e Istituto Auxologico Italiano Dr. Ettore Seregni Istituto Nazionale dei Tumori Fondazione IRCCS Milano

Riduciamo al minimo le complicanze Quali presidi?

Gianlorenzo Dionigi, MD, FACS, FEBS-ES

Professor of Surgery Director, Division of General Surgery Head, Endocrine Section IRCCS Istituto Auxologico Italiano

University of Milan, Italy



- Preoperative Applied Science
- Intraop- Devices
- Postop- Technology

Post-thyroidectomy Morbidity

- Thyroid disease
- Patient related

- Surgeon' experience
- Modality of surgery

Risk Factors for Bleeding

PATIENT RELATED

Anticoagulation drugs Von Willebrand's disease Cirrhosis/alcohol use Haemophilia Smoking

THYROID DISEASE

Graves' disease Toxic adenoma Toxic multinodular goiter Intrathoracic gland Re-do surgery Cancer

TECHNIQUE

Mode of access Bilateral exploration Residual thyroid tissue Experience

POSTOPERATIVE CARE

Cough Emesis Hypertension

Wide variability of Morbidity rates

✤ Mortality (0.08-0.2) ◆ RLNP (3.5-13%) ✤ Transient 5% ✤ Permanent 1% Hypocalcemia (6% - 42%)✤ Transient 30% \bullet Permanent 5% \bullet Bleeding (0-4%) ↔ Wound (1-5%)

✤ Disphagia (0-15%)

- ✤ EBSLN injury (0-28%)
- ↔ Chyle leak (0-0.2%)
- Esophageal injury (0-1%)
- Tracheal injury (0-1%)

Horner's syndrome (0.2-0.3%)

Barcinsky 2013 Clerici, 2021 Moreno, 2017 Du, 2018 Dralle h, 2015 Randolph GW, 2013 Dionigi G, 2019 Eurocrine Audit, 2020

Morbidity rates flexibility

✓ Continuous partecipation to Audit programs ✓ Arbitrariness for morbidity definition ✓ No consensus on how to grade complications ✓ Non-centralized surgery ✓ Observation time ✓ Prospective design analysis \checkmark Cost of Audit

Dralle h, 2015 Randolph GW, 2013 Dionigi G, 2019 Eurocrine Audit, 2020

RLNP rates

✓ No routine postoperative laryngeal examination Bergamaschi R. Am J Surg 1998 **0.3%** RLNP

✓ Routine postoperative laryngeal examination Lo CY, Arch Surg 2000 7% RLNP

Langenbecks Arch Surg (2010) 395:327–331 DOI 10.1007/s00423-009-0581-x

ORIGINAL ARTICLE

Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury

Gianlorenzo Dionigi • Luigi Boni • Francesca Rovera • Stefano Rausei • Paolo Castelnuovo • Renzo Dionigi

- The rate of RLN morbidity shows a considerable variation due to the different time intervals of FNL.
- The rate of RLN palsy was 6.4% at *T1* (53 out of 825 NAR), 6.7% at *T2* (56 out of 825 NAR), 4.8% at *T3* (*N* = 40), 2.5% at *T4* (*N* = 21), 0.8% at *T5* (*N* = 7), and 0.7% at *T6* (*N* = 6), according to different time intervals of FNL in the postoperative period.

Hypocalcemia rates

✓ No routine postoperative early iPTH Bergamaschi R. Am J Surg 1998 5%

✓ Routine postoperative early iPTH Bellantone R, Surgery 2000 34%

Morbidity due to Thyroid Disease

Thyroid Disease **Risk Factors in relation to morbidity**

- ✓ Graves' disease (Zhang D, 2016)
- Malignancy (Hui S, 2014)
- ✓ Hashimoto's disease (Dralle H, 2012)
- ✓ Goiter with intra-thoracic extension (Del Rio, 2010)
- ✓ Recurrent goiter (Randolph GW, 2020)
- ✓ Repetitive cancer (Randolph GW, 2020)
- $\sim {
 m LN}+$ (Miccoli P, 2013)
- ✓ Hyperthyroidism at the time of surgery (Dralle H, 2012)
- ✓ Previous thermal ablation (Dralle, 2021)
- ✓ Weight specimen (>60g) (Kim HY, 2009)

Augmented reality technology for preoperative planning during thyroid surgery

- Superimpose the virtual images onto a view of the surgical field
 - Reconstruct three-dimensional (3D)
 - 3D printing

- Risk stratification (i.e.prediction of difficult thyroidectomy)
 - Artificial intelligence techniques

Bini F, Cancers 2021

Artificial intelligence techniques

THYROID Volume 31, Number 11, 2021 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2021.0155

Varied Recurrent Laryngeal Nerve Course Is Associated with Increased Risk of Nerve Dysfunction During Thyroidectomy: Results of the Surgical Anatomy of the Recurrent Laryngeal Nerve in Thyroid Surgery Study, an International Multicenter Prospective Anatomic and Electrophysiologic Study of 1000 Monitored Nerves at Risk from the International Neural Monitoring Study Group

Whitney Liddy,^{1,i} Che-Wei Wu,^{2,ii} Gianlorenzo Dionigi,³ Gianluca Donatini,⁴ Yasemin Giles Senyurek,⁵ Dipti Kamani,⁶ Ayaka Iwata,^{6,7} Bo Wang,^{6,8,iii} Okenwa Okose,⁶ Anthony Cheung,⁶ Yoshiyuki Saito,^{6,9,iv}
Claudio Casella,¹⁰ Nurcihan Aygun,¹¹ Mehmet Uludag,¹¹ Katrin Brauckhoff,^{12,13} Bruno Carnaille,¹⁴ Fatih Tunca,⁵ Marcin Barczyński,¹⁵ Hoon Yub Kim,^{16,17} Emerson Favero,¹⁸ Nadia Innaro,¹⁹ Kyriakos Vamvakidis,²⁰ Jonathan Serpell,²¹ Anatoly F. Romanchishen,²² Hiroshi Takami,²³ Feng-Yu Chiang,²⁴ Rick Schneider,²⁵ Henning Dralle,²⁶ Jennifer J. Shin,^{27,28} Amr H. Abdelhamid Ahmed,^{6,v} and Gregory W. Randolph^{6,29}

Artificial intelligence techniques

The Laryngoscope © 2022 The American Laryngological, Rhinological and Otological Society, Inc.

Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery

Bo Wang, MD, PhD ^(D); Jing Zheng, MD; Jia-Fan Yu, MS; Si-Ying Lin, MS ^(D); Shou-Yi Yan, MD; Li-Yong Zhang, MD; Si-Si Wang, MD; Shao-Jun Cai, MD; Amr H. Abdelhamid Ahmed, MBBCH, MMSc ^(D); Lan-Qin Lin, MD; Fei Chen, PhD; Gregory W. Randolph, MD ^(D); Wen-Xin Zhao, MD, PhD ^(D)

Preoperative optimization

- Pre-operative tools are still under scrutinity
- Therefore, the continue interaction with Endocrinologists & nuclear medicine is fundamental for the prediction of difficult thyroicetomy

Bini F, Cancers 2021

Morbidity due to Patient Anatomy

Anatomical Peculiarities of the Neck in Children

- Small thyroid gland volume
- Thin RLN
- Thin RLN branches
- Thin EBSLN
- Laryngo-tracheomalacia (softer cartilaginous framework of trachea and larynx)
- Narrow larynx and trachea
- Larynx is more anterior
- At the glottic (vocal fold) level, the larynx is approximately one third the adult size
- Larynx is situated higher in the neck
- Angle between the epiglottis and vocal cords is more acute in the infant, thus making direct visualization more difficult
- Small parathyroid glands
- Small thyroid arteries and veins
- Hypertrophic thymus
- Thymus superimposed on the thyroid gland
- Collateral RLN fibers innervate the thymus

- Possible congenital anomalies
- Abbreviations: RLN: recurrent laryngeal nerve; EBSLN: external branch superior laryngeal nerve.

Zangh D, Dionigi G, Cancers 2022

Patient Anatomy

BMI is risk factor for postoperative morbidity, increase postoperative stay

Total thyroidectomy

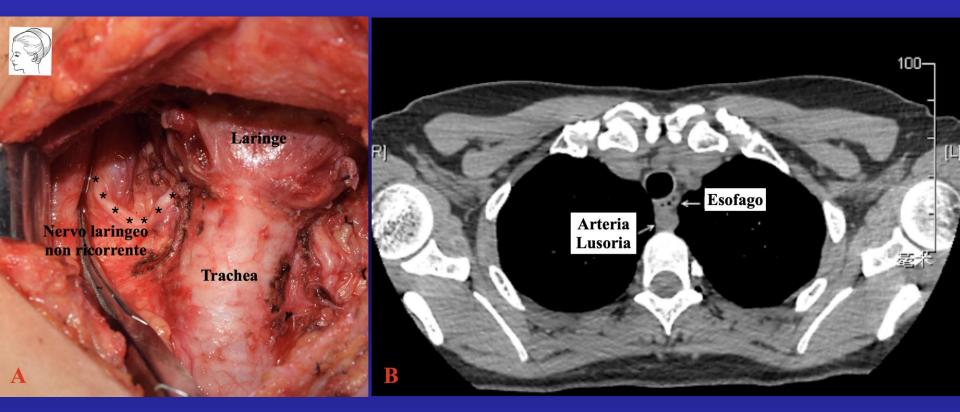
Category	Any hypocalcemia	Odds Ratio (95% Cl)	Category	Permanent hypocalcemia	Odds Ratio (95% Cl)
Age 19-39 40-59 ≿ 60	=	1.00 (1.00, 1.00) 0.69 (0.47, 1.01) 0.74 (0.49, 1.13)	Age 19-39 40-59 ≥ 80	t	1.00 (1.00, 1.00) 0.17 (0.06, 0.49) 0.28 (0.00, 0.83)
Sex Male Female	•	1.00 (1.00, 1.00) 1.61 (1.13, 2.29)	Sex Male Female	•	1.00 (1.00, 1.00) 4.98 (1.13, 22.05)
Eody Mass Index <20 20-24.9 25-29.9 25-29.9 230		0.75 (0.43, 1.33) 1.00 (1.00, 1.00) 0.96 (0.72, 1.33) 0.88 (0.51, 1.25)	Body Mass Index <20 20-24.9 25-29.9 ≥30		0.52 (0.10, 2.58) 1.00 (1.00, 1.00) 0.58 (0.22, 1.50) 1.09 (0.41, 2.89)

Sam Van Slycke, Int J Surg 2021

Pre-operative unpredictable RLN risk situations

No.	Situations	
1	Atypical RLN pattern	
2	RLN anterior to the thyroid gland	
3	RLN fixed, splayed or entrapped	
4	RLN posterior to Berry ligament	
5	Anteriorly located RLN to the Zuckerkandl's tuberculum (posterior nodule)	
6	Branched RLN	
7	Antevascular RLN	
8	Thin RLN	
9	Invaded RLN	
10	Non-RLN	
RLN = recurrent laryngeal nerve.		

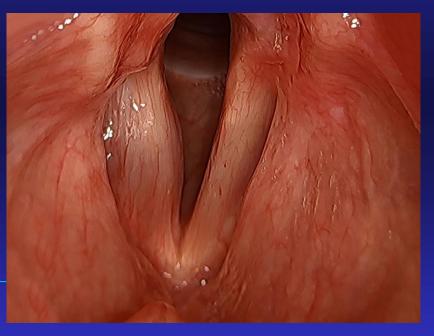
Dionigi G. J Endocr Surg 2017


Augmented reality technology for intraoperative navigation during thyroid surgery

- Pre-operative
 - Imaging (US, CTscan, etc.)
 - Laryngeal examination (L1)
- Intraoperative
 - Magnifing glasses
 - Neural monitoring (IONM)
 - Endoscopy, 3D
 - 4K

- CARCINOMA DELLA TIROIDE 2023 10 FEBBRAIO 2023 MILANO Istituto Nazionale dei Tumori
- Florescence

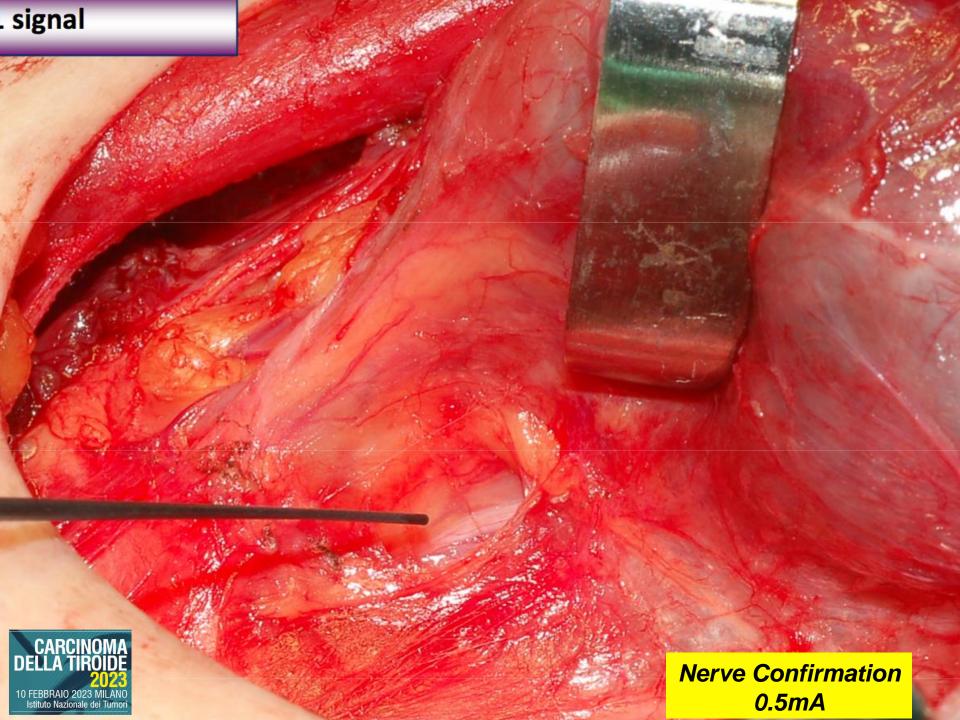
CT scan for **NRLN** detection

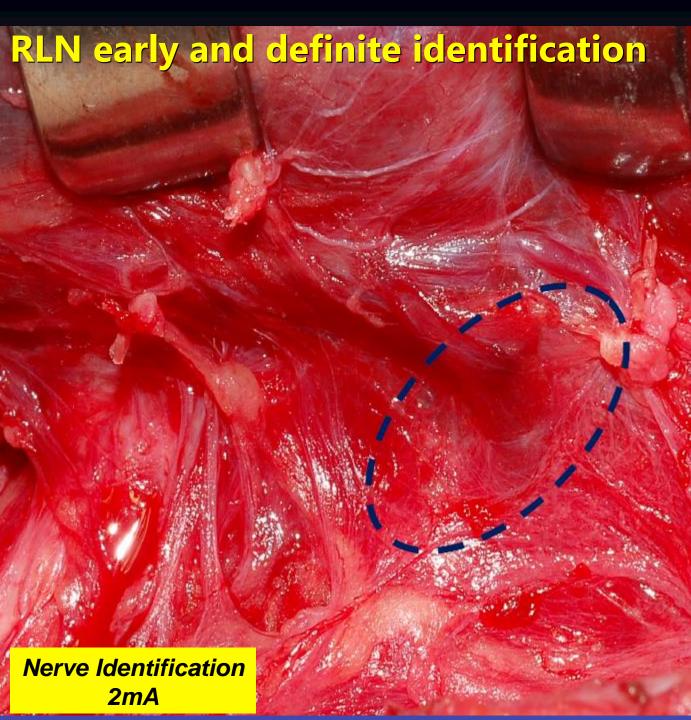


Dionigi G. World J Surg. 2013.

The importance of L1

- Clinical voice assessment is insufficient (Ferrag, 2006)
- Screening for preop. VCP (Randolph, 2002)
- Legal documentation (Dralle, 2007)
- Enhance surgical strategy (Dionigi, 2010)
- Reference for IONM (Dionigi, 2011)

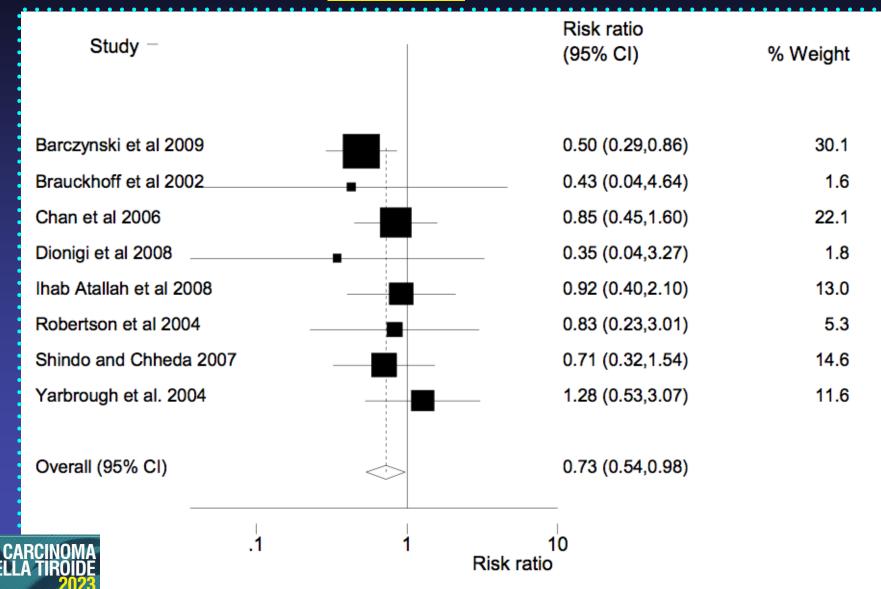

Castelnuovo P & Dionigi G. LAS. 2016


R1 signal

Nerve Identification 2mA

RLN early and definite identification

Recurrent PTC #2015-I-007


RLN early and definite identification Nerve Confirmation 1-0.5mA

Recurrent PTC #2015-I-007

STANDARDIZED IONM

UPDATED META-ANALYSIS

Relative risk of *transient* injury with/without IONM

Istituto Nazionale dei Tumori

Rulli F, Dionigi G, 2013

RATE OF RLN BIFURCATION IDENTIFICATION

Results. Among patients operated with vs. without IONM, the early RLN injury rate was 3.0% vs. 6.7% (p=0.02), including 2.0% vs. 5.0% (p=0.04) of temporary nerve lesions, and 1.0% vs. 1.7% of permanent nerve events (p=0.31), respectively. Extralaryngeal RLN bifurcation was identified in 42 (27.8%) vs. 25 (16.6%) of patients operated with vs. without IONM, respectively (p=0.001). Mean I-131 uptake following total thyroidectomy with vs. without IONM was $0.67 \pm 0.39\%$ vs. $1.59 \pm 0.69\%$ (p<0.001). I-131 uptake lower than 1% was found in 106 (70.2%) vs. 38 (25.2%) patients operated with vs. without IONM, respectively (p<0.001).

Intertwining between branches of artery and RLN

Nerve Confirmation 0.5mA

Surgical strategy & IONM

• *I*-IONM

Neural injury point mapping

- i.e. removal of clip, ligature, binding (Randolph G, 2008)
- i.e. injection of growth factor gene therapy (Shiotami A, 2010)

Intraoperative corticosteroids

• early recovery RLNP (Wang LF, 2006)

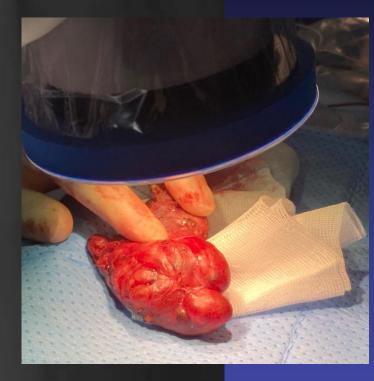
Stage thyroidectomy

• prevent bilateral RLNP

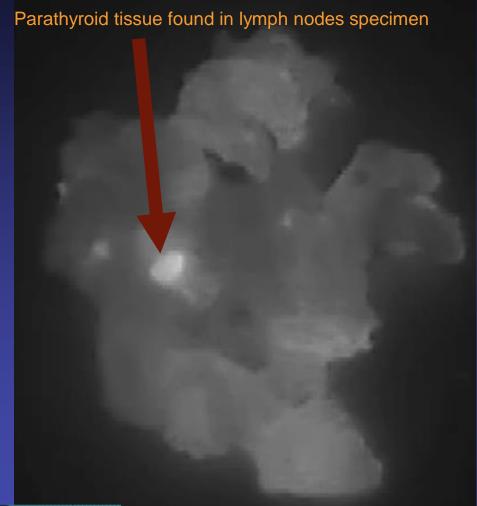
• C-IONM

Syncronization of surgical manouvers

• possible reduction of RLNP rate (Dralle H, 2012)


Areas of autofluorescence = parathyroid tissue

Paras C, J Biomed Opt 2011




Surgical dissection plan

- Incidence of inadvertent removal of parathyroid gland during *thyroidectomy* is 5-10% (Kose E, Surgery 2020)
- Rates of inadvertent parathyroidectomy during *central compartment lymphadenectomy* are 10-22% (DiMarco, Ann R Coll Surg Engl 2019)
- Inadverted parathyroidectomy is associated with transient (15-35%)

and permanent (5-7%) hypocalcemia rates (Takahashi T, Laryngoscope 2021)

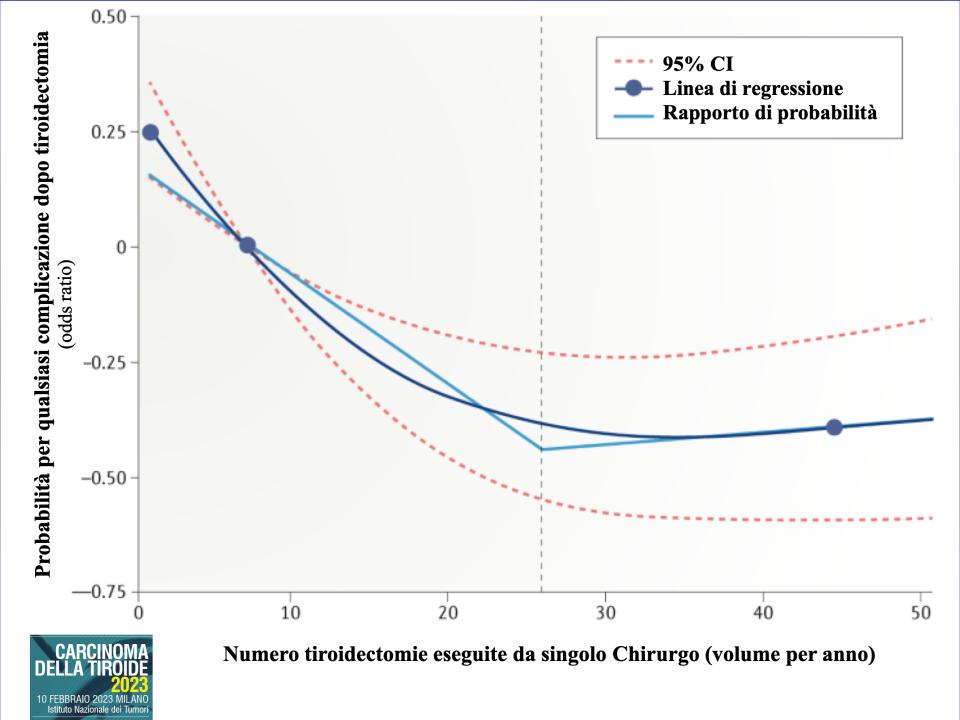
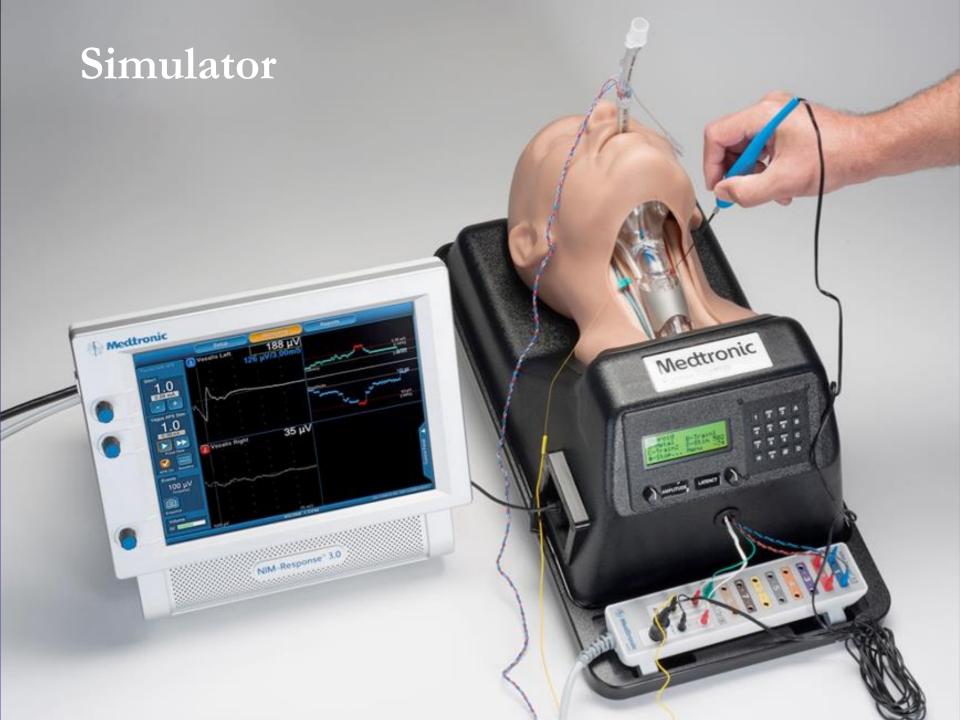
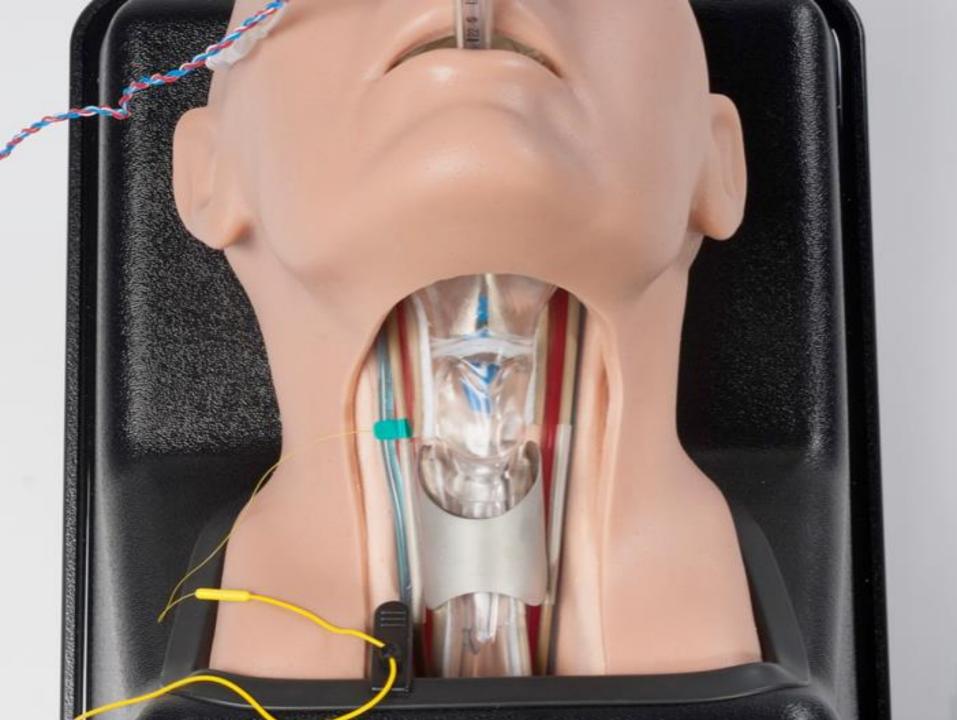


Table 2. Primary and Secondary Outcomes

IAMA Surgery 2010	No. (%) [95% CI]		
JAMA Surgery, 2019	Near Infrared-Induced Autofluorescence	Standard Care	
Characteristic	(n = 121)	(n = 120)	P Value
Primary outcome			
Postoperative hypocalcemia at postoperative day 1 or 2	11 (9.1) [4.0-14.2]	26 (21.7) [14.3-29.0]	.007ª
Secondary outcomes			
Nadir of postoperative corrected calcium, median (IQR), mg/dL	8.86 (8.62-9.18)	8.74 (8.25-9.03)	.025 ^b
Parathyroid hormone at postoperative day 1, median (IQR), pg/mL	33.2 (21.9-48.1)	28.6 (12.0-46.5)	.07 ^b
Supplementation			
Calcium only	11 (9.1) [4.0-14.2]	24 (20.0) [12.8-27.2]	.016 ^a
Calcium and vitamin D	6 (5.0) [1.1-8.9]	8 (6.7) [2.9-12.8]	.78 ^c
Identified parathyroid glands, No.			
0	1 (0.8) [0.0-2.5]	2 (1.7) [0.0-4.0]	
1	2 (1.7) [0.0-4]	19 (15.8) [9.3-22.4]	
2	20 (16.5) [10.0-23.3]	40 (33.3) [24.9-41.8]	< 0013
3	40 (33.1) [24.9-41.8]	36 (30.0) [21.8-38.2]	<.001 ^a
4	57 (47.1) [38.5-56.4]	23 (19.2) [12.1-26.2]	
Not determined	1 (0.8) [0-2.5]	NA	
Inadvertently resected parathyroid glands, No.	3 (2.5) [0-5.2]	14 (11.7) [5.9-17.4]	.006 ^c
Autotransplanted parathyroid glands, No.			
0	116 (95.9) [93.5-99.9]	104 (86.7) [80.6-92.8]	0003
≥1	4 (3.3) [0.1-6.6]	16 (13.3) [7.3-19.4]	.009 ^a
Not determined	1 (0.8) [0.0-2.5]		
Permanent hypocalcemia	0	2 (1.7) [0.0-4.0]	.15 ^c
Nonparathyroid complication	3 (2.5) [0.0-5.3]	3 (2.5) [0.0-5.3]	>.99°
Duration of hospitalization, median (IQR), d	3 (3.0-4.0)	3.0 (3.0-4.0)	.98 ^b

CARCINOMA DELLA TIROIDE 2023 10 FEBBRAIO 2023 MILANO Istituto Nazionale dei Tumori


Morbidity due to Surgeon Experience CARCINOMA DELLA TIROIDE 2023 10 FEBBRAIO 2023 MILANO Istituto Nazionale dei Tumori



Technologies Enhancing Surgeon Experience

- Simulators
- IONM (Dralle h, 2008)
- Tools for refer Patients to referral Centers
 - National referral protocols/programs
 - Increase accessibility
 - Increase national comunication/coordination
 - Finance resources
 - Health system structure

Risk due to Modality of Surgery

ORIGINAL SCIENTIFIC REPORT

Transoral Robotic Thyroidectomy for Papillary Thyroid Carcinoma: Perioperative Outcomes of 100 Consecutive Patients

Hong Kyu Kim¹ · Young Jun Chai² · Gianlorenzo Dionigi³ · Eren Berber⁴ · Ralph P. Tufano⁵ · Hoon Yub Kim¹ Tabl

Thyroidal complications n.2 TORT complications n.7

Table 4 Postoperative surgical complications

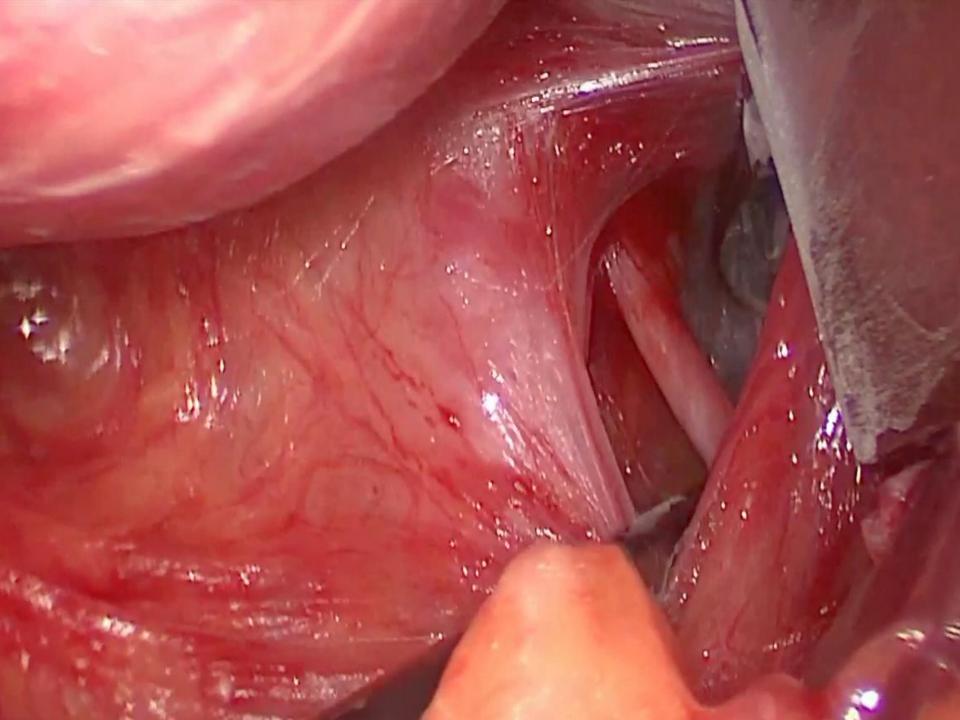
Variables	Value
General complications, n	
Bleeding	1
Surgical site infection	0
Seroma collection	0
Chyle leakage	0
Vocal cord palsy	
Transient	1
Permanent	0
Hypoparathyroidism	
Transient	0
Permanent	0
TORT-specific complications, n (case number)	
Mental nerve injury	0
Zygomatic bruising	2 (5, 13)
Chin flap perforation	1 (3)
Oral commissure tearing	2 (6, 27)
Dimpling on the chin	2 (21, 34)

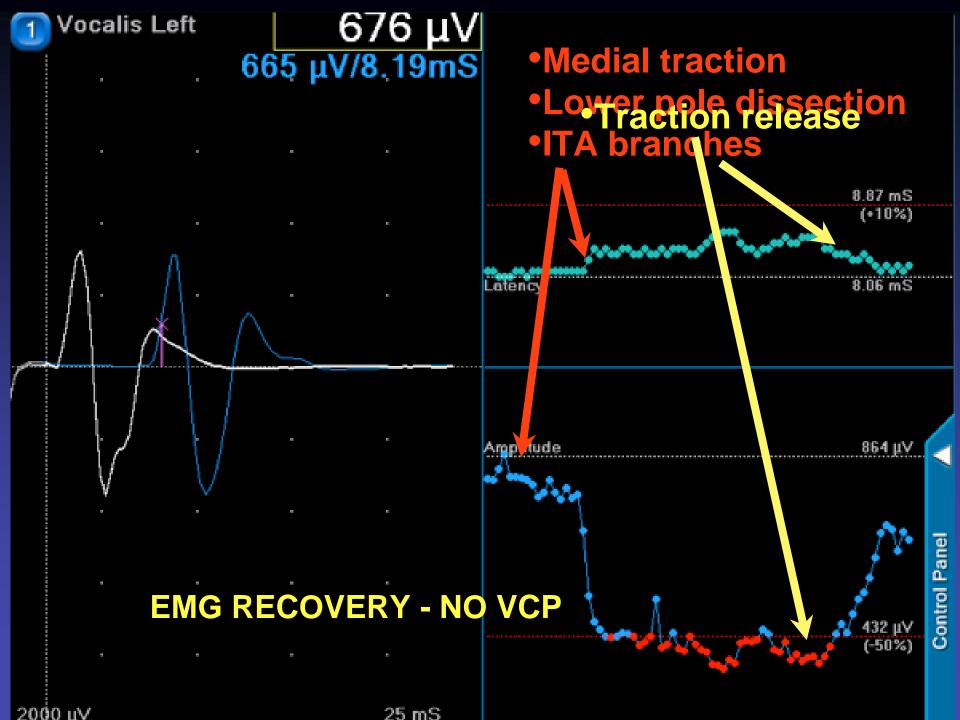
Mental nerve protection MEDIAL INCISION

Safe

Best Practice and Research Clinical Endocrinology and Metabolism

2019

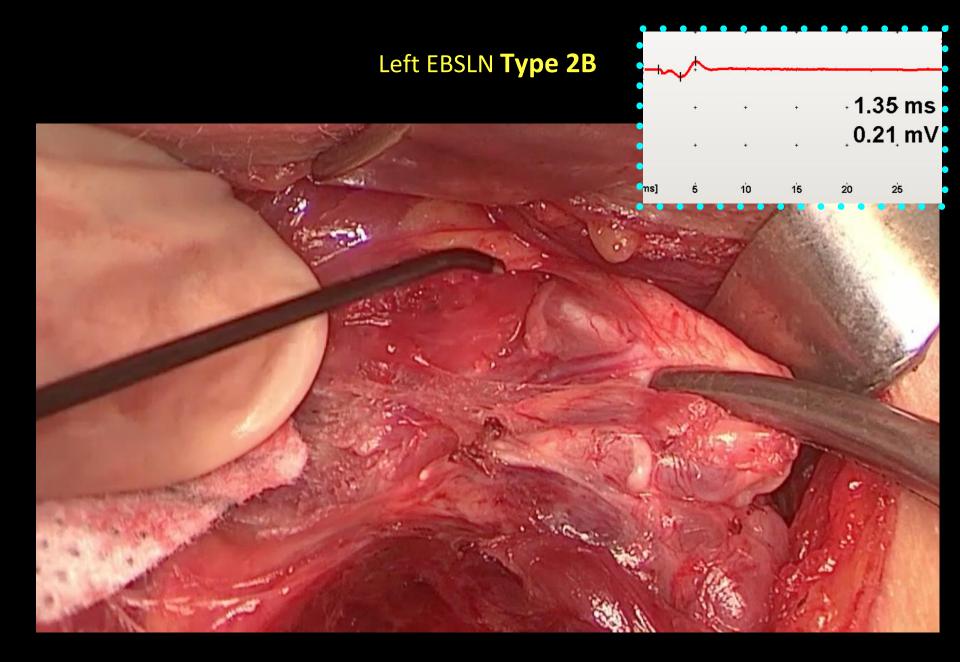

Dionigi G


Transoral Endoscopic Thyroidectomy Specific Complications Kindly HY Kim, Korea University

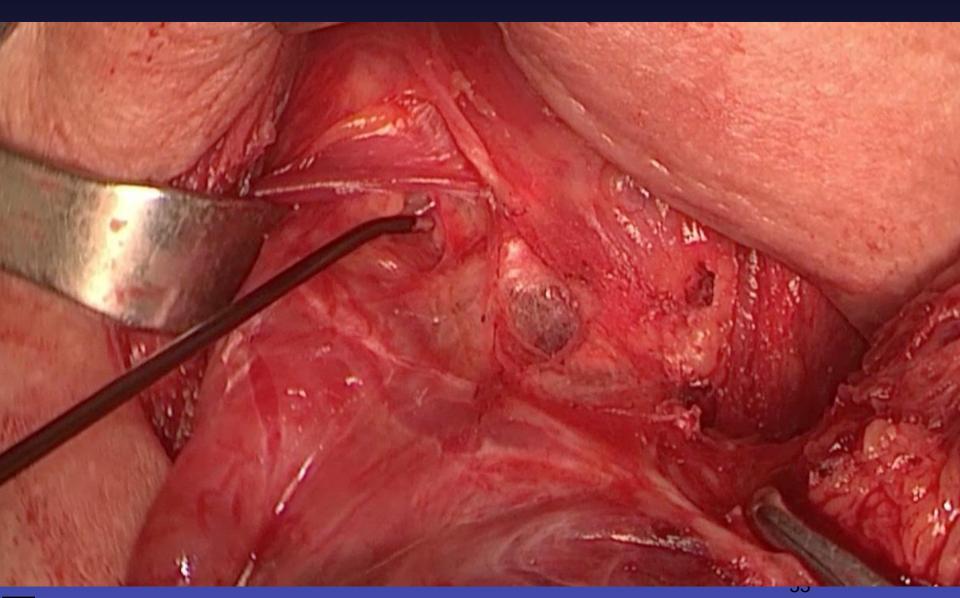
Complication	Cause / Mechanism	Prevention / Solution
Mental nerve injury, causing sensory deficit of lower lip and lower chin	Oral vestibular mucosal and muscular tearing	High semicircular midline incision and vestibular tunneling for trocar insertion
Bruise over zygoma	Accidental compression of zygoma by robotic arms	Protective sponge application over zygoma
Chin flap perforation	Wrong axial (perpendicular) vestibular dissection with elctrocautery	Careful axial (parallel) vestibular dissection with blunt Mosquito forceps
Mouth commissure tearing	Excessive oral lateral port movements when 1) upper flap dissection, 2) sup pole dissection, and 3) midline closure	Oral mucosal protection sutures + Plaster application over commissures
Skin dimpling in midline of lower chin	Compression of mandible tip by intraoral midline trocar	Spontaneously recovers in 3-6 months ; 8mm midline trocar (da Vinci Xi) preferred, rather than 12mm trocar (Si)

Future directions C-IONM

Original article


Superiority of continuous over intermittent intraoperative nerve monitoring in preventing vocal cord palsy

R. Schneider¹, A. Machens¹, C. Sekulla¹, K. Lorenz¹, M. Elwerr¹ and H. Dralle^{1,2}


			Vocal core	d palsy	
		Early postoperative		Р	ermanent
	Odds ra	atio	Р	Odds ratio	Р
pe of IONM					
Continuous	0.56 (0.42,	, 0.75)	< 0.001	0.03 (0.01, 0.25	5) 0.001
Intermittent	1.00 (refer	rence)		1.00 (reference	
	I	Intermittent IONM			Continuous IONM
Early postoperative	Normal EMG signal	Abnormal EMG signal	Total	Normal EMG signal	Abnormal EMG
RLN palsy	orginar	orginal	Total	Signal	signal
No	4860	40	4900	5112	signal 18
	-	-		-	-
No	4860	40	4900	5112	18
No Yes	4860 59	40 65	4900 124	5112 9	18 69
No Yes Total	4860 59	40 65	4900 124	5112 9	18 69
No Yes Total Diagnostic indices	4860 59	40 65 105	4900 124	5112 9	18 69 87
No Yes Total Diagnostic indices Sensitivity (%)	4860 59	40 65 105 52·4 (43·6, 61·2)	4900 124	5112 9	18 69 87 88·5 (81·4, 95·6)
No Yes Total Diagnostic indices Sensitivity (%) Specificity (%)	4860 59	40 65 105 52·4 (43·6, 61·2) 99·2 (98·9, 99·4)	4900 124	5112 9	18 69 87 88·5 (81·4, 95·6) 99·6 (99·5, 99·8)

Future directions EBSLN monitoring

Dionigi G, 2016

Randomized Controlled Trial of Visualization versus Neuromonitoring of the External Branch of the Superior Laryngeal Nerve during Thyroidectomy

Marcin Barczyński · Aleksander Konturek ·	World J Surg
Małgorzata Stopa · Agnieszka Honowska ·	DOI 10.1007/s00268-012-1547-7
Wojciech Nowak	

	EBSLN + RLN visualization	IONM of the EBSLN + RLN	p value [†]
EBSLN identification rate (%)	72 (34.3)	176 (83.8)	<0.001
EBSLN not identified	138 (65.7)	34 (16.2)	<0.001
Cernea type 1	26 (12.4)	100 (47.6)	<0.001
Cernea type 2A	20 (9.5)	34 (16.2)	0.04
Cernea type 2B	26 (12.4)	42 (20.0)	0.03
RLN identification rate (%)	210 (100)	210 (100)	1.0
Single-trunk RLN (%)	150 (71.4)	132 (62.9)	0.06
Bifurcated RLN (%)	60 (28.6)	78 (37.1)	0.06
Nonrecurrent laryngeal nerve (%)	0 (0)	1 (0.5)	0.31

Future directions Upper aereodigestive symptoms

THYROID Volume 22, Number 8, 2012 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2011.0118 THYROID SURGERY

Prevalence of Upper Aerodigestive Symptoms in Patients Who Underwent Thyroidectomy With and Without the Use of Intraoperative Laryngeal Nerve Monitoring

> Isabel Cristina Medeiros Silva,¹ Irene de Pedro Netto,¹ Jose Guilherme Vartanian,² Luiz Paulo Kowalski,² and Elisabete Carrara-de Angelis¹

> > EMG

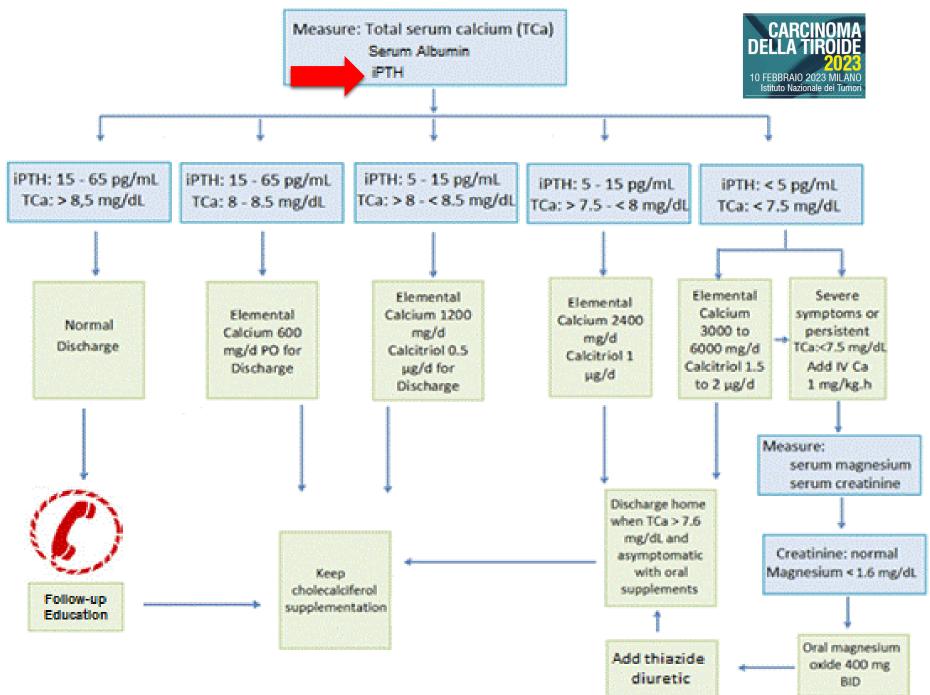
Early detection of post-operative morbidity

Technology enhancing early management of morbidity

- RLN injury
 - -Post-operative laryngeal examination
 - Stroboscopy
- Hypocalcemia
 - Early iPTH measurement
- Wound care

The importance of L2

- Voice assessment is insufficient (Randolph, 2002)
- Audit (Randolph, 2012)
- Early speech therapy (Elderbagh, 2009)
- Legal documentation (Dralle, 2007)
- Non-surgical VC injury (Dionigi, 2010)
- Reference for IONM (Dionigi, 2011)



Castelnuovo P & Dionigi G. LAS. 2016

Workup and management of postsurgical hypoparathyrodism

Wound care

Makay, 2018 Follow-up information sheet

Post Op Care Post Transoral Thyroid Surgery

Day of Discharge: You will stay overnight in hospital after the surgery. You will be discharged home the following day.

Pain Relief: We will provide you with pain relief during and after the surgery.

Antibiotics: You will need to antibiotics for 5 - 7 days after the surgery. This is to prevent bacteria in the mouth causing an infection of the wound.

Mouthwash: Use mouthwash to clean your mouth 3 times per day for 5 - 7 days after the surgery.

Brush Teeth: You may brush your teeth as normal from the day after the surgery.

Early Mobilisation: You will be encouraged to move out of bed from 4 hours after the surgery.

Eating and Drinking: You may eat and drink normal foods on the same day after the surgery.

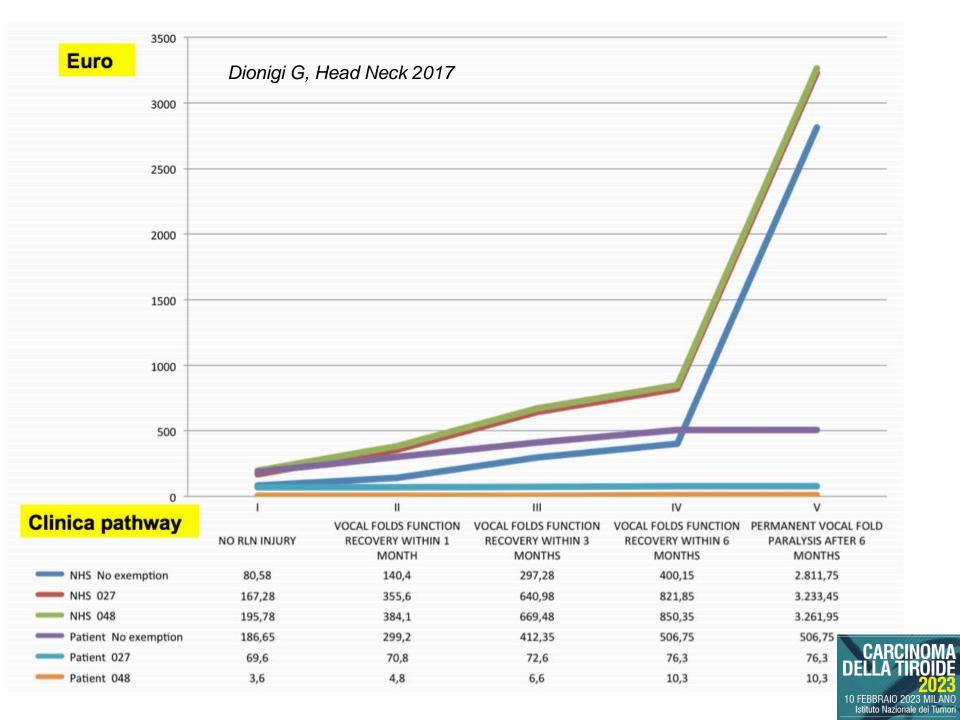
Showering: You may shower and shave on the same day after the surgery.

Mouth Exercises: Practice mouth exercises for 5–7 days after the surgery. See next page for demonstration.

No dressings are required.

Look out for unlikely complications: In the very unlikely event that any excess ooze, discharge, redness, heat, swelling or increased pain occurs please attend your G.P. Any 'pins and needles' sensations noted in hands would need quick attention by your G.P.

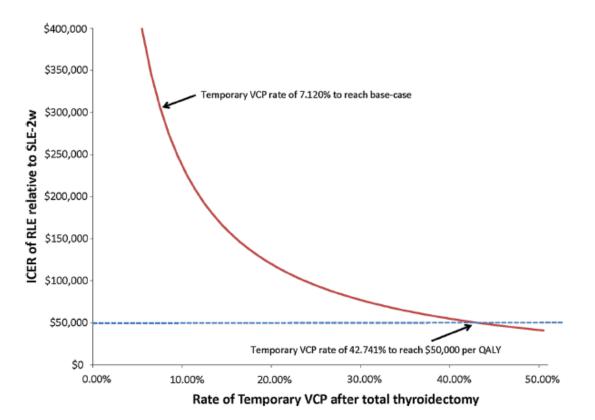
Follow Up: 2 weeks and 6 weeks: You will be seen by the surgical team for review of your wound at 2 weeks and results at 6 weeks post your utpatient. Appointment for same will be posted out to



Prof Redmond's private clinic you can ring 021-4941367 ointment.

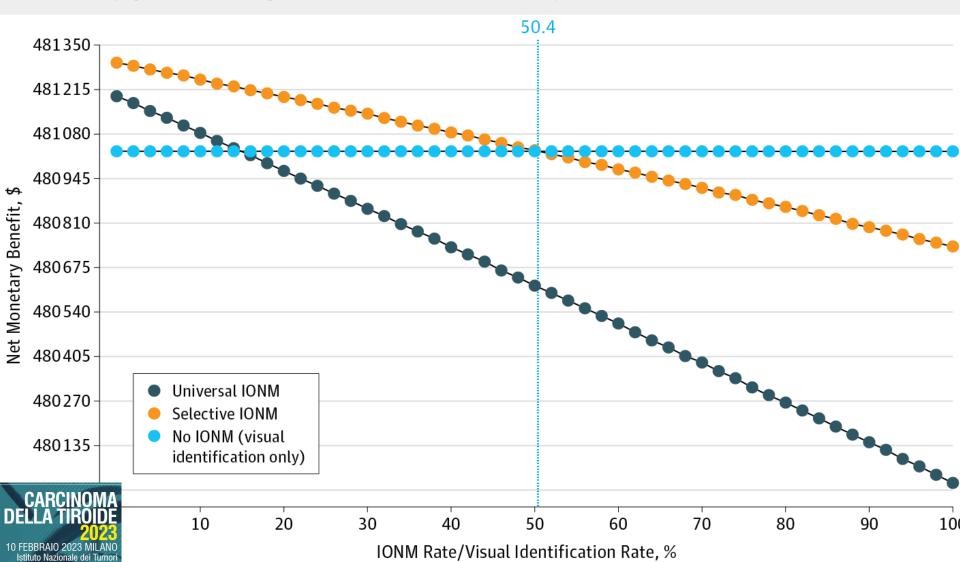
Open mouth wide		Smile with lips closed	
Conver, physiolic approximation area	Practice opening your mouth as wide as possible.	G www.physisteruppearaties.com	Smile with your lips closed.
Cheesy Grin		Make lips disappe	ear
Sinne, physisteoppeardoor.com	Stretch your mouth as wide as possible into a smile to reveal your teeth.	Barrar physisterepyramiters are	Roll your lips over your teeth to stretch the skin above and below your mouth.
Pucker lips		Puff out cheeks	
	Practice puckering your lips.		Practice closing your lips tightly and puffing out your cheeks.

Cost of technology & morbidity



Annals of SURGICAL ONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

ORIGINAL ARTICLE – ENDOCRINE TUMORS


Evaluating the Cost-Effectiveness of Laryngeal Examination after Elective Total Thyroidectomy

Brian Hung-Hin Lang, MS, FRACS¹, Carlos K. H. Wong, PhD², Raymond K. Y. Tsang, MBChB, FRCSEd(ORL)³, Kai Pun Wong, MBBS, FRCS¹, and Birgitta Y. H. Wong, MBBS, FRCSEd(ORL)³

From: A Cost-Utility Analysis of Recurrent Laryngeal Nerve Monitoring in the Setting of Total Thyroidectomy

JAMA Otolaryngol Head Neck Surg. 2016;142(12):1199-1205. doi:10.1001/jamaoto.2016.2860

Technology & Legal

Protocolli Gestionali Diagnostico-Terapeutico-Assistenziali in chirurgia tiroidea

Aggiornamento 2012, da sottoporre alla Consensus Conference del CLUB delle UEC, redatto da: Carmen De Crea, Angela Gurrado, Giuseppe Cavallaro, Marco Raffaelli, Gabriele Materazzi, Maria Grazia Chiofalo, Chiara Dobrinja, Giuliano Perigli e modificato secondo le indicazioni pervenute dai componenti del Direttivo.

Monitoraggio intraoperatorio dei nervi laringei ricorrenti (IONM)

In casi di previste particolari difficoltà tecnica (gozzi recidivi, con importante componente cervicomediastinica, tiroiditi) può rivelarsi un utile complemento tecnico l'utilizzo del monitoraggio intraoperatorio dei nervi laringei. Nel 2010 sono state proposte delle linee guida per un corretto e standardizzato neuromonitoraggio con l'intento di migliorare la qualità del IONM e limitare le inappropriate variazioni della tecnica⁶⁰.

Un corretto utilizzo del sistema IONM prevede:

- necessità di standardizzare la metodologia d'utilizzo per evitare gli errori più comuni;
- il sistema IONM non sostituisce il giudizio clinico ed è solo uno strumento aggiuntivo;
- valore predittivo positivo relativamente basso;
- analisi costo-beneficio tuttora da effettuare;
- necessità di ulteriori ricerche focalizzate sulla neurofisiologia e patologia dei RLN;
- monitoraggio del nervo laringeo superiore;
- esclusione della tiroidectomia in anestesia locale;
- la necessità di una sperimentazione multi-centrica con gruppi numerosi e ben definiti.

Per dimostrare una riduzione della percentuale di paralisi dei RLN dal 2% all'1%, sarebbe necessario un gruppo di studio di circa 10.000 pazienti. Al momento solo uno studio prospettico randomizzato ha dimostrato che, utilizzando un sistema di monitoraggio, la prevalenza di paresi transitoria dei RLN è rispettivamente più bassa del 2.9% nei pazienti ad alto rischio e dello 0.9% nei pazienti a basso rischio⁶¹.

Conclusion

- Technologies improve the quality of surgery
- Some technologies are scientifically immature
- Morbidity still occurs

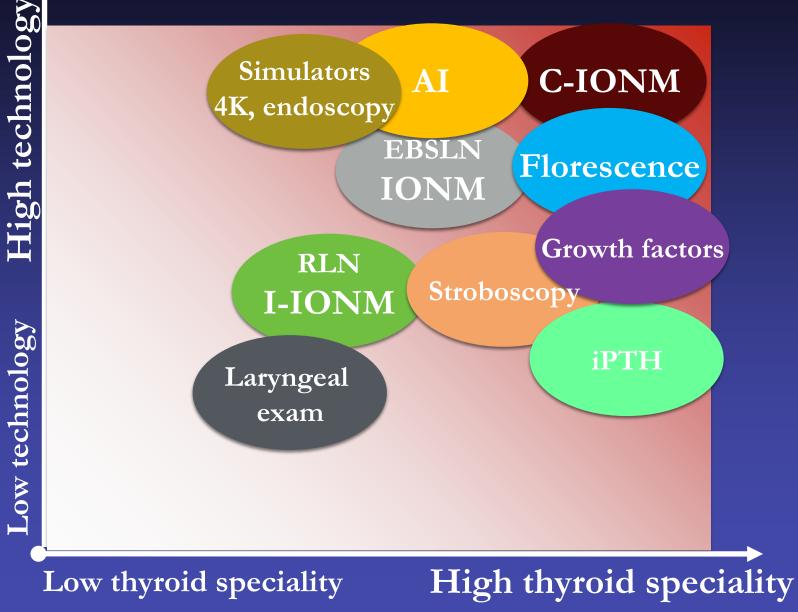
Contents lists available at ScienceDirect

Best Practice & Research Clinical Endocrinology & Metabolism

Langenbecks Arch Surg (2006) 391: 1–3 DOI 10.1007/s00423-005-0012-6

EDITORIAL

journal homepage: www.elsevier.com/locate/b


Preface

Henning Dralle

Impact of modern technologies on quality of thyroid surgery

Modern endocrine surgery – Striving for a better quality of life Dralle H, 2019

Centralization of Technology

CARCINOMA DELLA TIROIDE 2023 10 FEBBRAIO 2023 MILANO Istituto Nazionale dei Tumori

Responsabili Scientifici Prof.ssa Laura Fugazzola Università degli Studi di Milano e Istituto Auxologico Italiano Dr. Ettore Seregni Istituto Nazionale dei Tumori Fondazione IRCCS Milano

GRAZIE

Gianlorenzo Dionigi, MD, FACS, FEBS-ES

Professor of Surgery Director, Division of General Surgery Head, Endocrine Section IRCCS Istituto Auxologico Italiano

University of Milan, Italy

