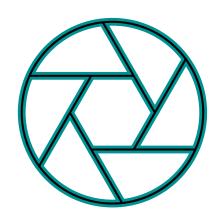


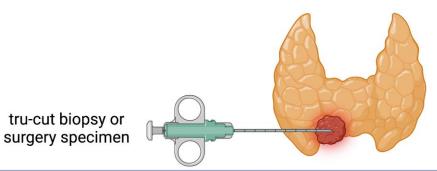
Studio del profilo molecolare del carcinoma tiroideo: perché farlo?

Elena Colombo

S.C. Oncologia Medica 3 – Tumori di Testa e Collo


Molecular Tumor Board

Fondazione IRCCS Istituto Nazionale dei Tumori, Milano


Disclosures

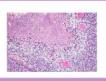
I have no potential conflicts of interest to report

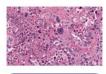
Outline

- 1. Molecular profiling of Thyroid Carcinoma: optional or necessary?
- 2. International Guidelines and the Atlantic gap
- 3. From theory to reality: the experience of TC profiling at INT
- 4. Future directions

Thyroid Cancers (TC) from the follicular cells/thyreocytes

differentiation





Papillary PTC >80%

Follicular FTC 10%

OTC 4%

Poorly Differentiated PDTC 3-5%

Anaplastic ATC

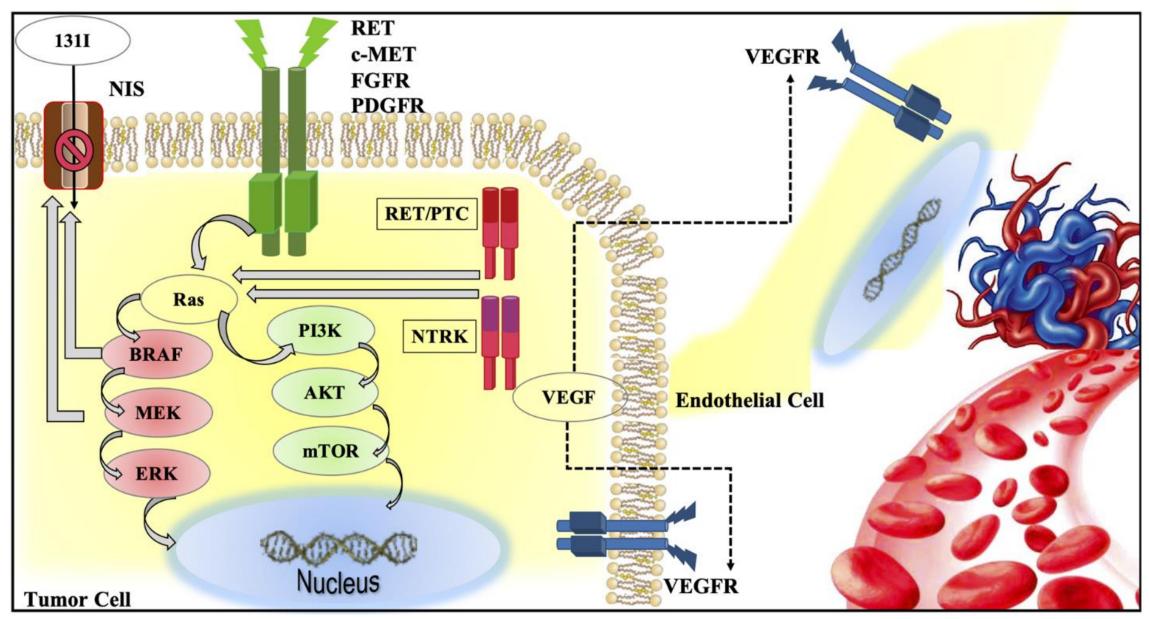
Radioiodine therapy Multikinase inhibitors: Lenvatinib (SSN), Cabozantinib (L.648/96) Taxane-based chemo

BRAF NTRK RET ALK

NRAS HRAS KRAS PIK3CA

RAS CDKN2A

RAS **BRAF** TMB-H NTRK, RET


BRAF RAS TMB-H ALK NTRK

selective RET inhibitors Selpercatinib **NTRK** inhibitors Entrectinib Larotrectinib

BRAF/MEK inhibitors Dabrafenib/ Trametinib

Immunotherapy for TMB-H solid tumors

Clinical Trials

Lorusso L. et al, Int. J. Mol. Sci. 2021

Valid reasons to offer molecular profiling of TC

PATIENT

- ✓ Performance status
- ✓ Swallowing function/gastrostomy
- ✓ Clinical trials feasibility
- ✓ Contraindications to VEGFi
- ✓ Intolerance to VEGFi
- ✓ Failure to VEGFi

HYSTOLOGY

- ✓ Anaplastic TC (BRAF)
- ✓ Papillary TC
- ✓ PDTC, Oncocytic TC, FTC

- ✓ Advanced R/M **ATC**
- ✓ Advanced R/M RAIR DTC
- ✓ Borderline resectable **ATC** (U.S.A.)
- ✓ Re-biopsy after targeted therapy

Expand the therapeutic options with targeted therapy/immunotherapy

Multidisciplinary Team

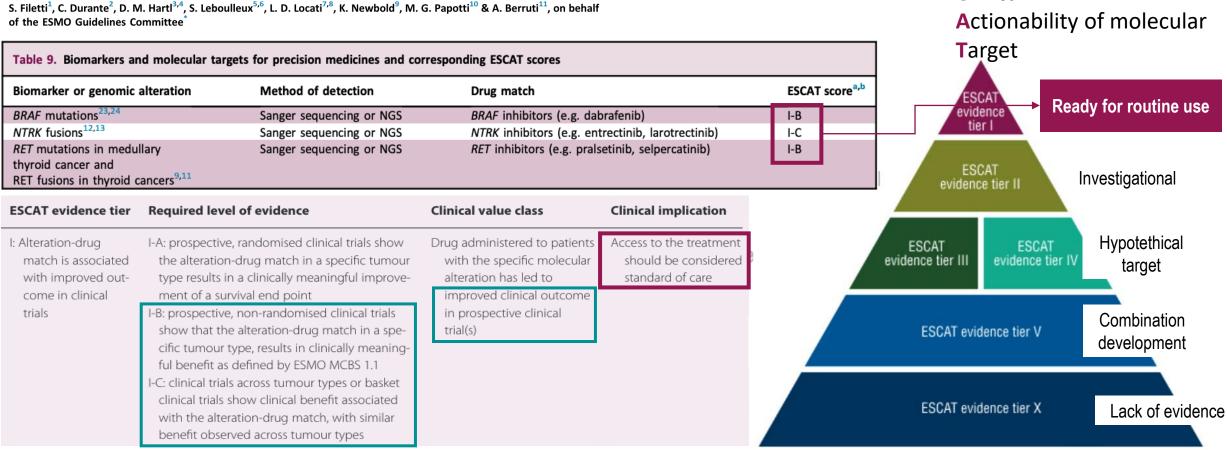
Molecular Tumor Board

International Guidelines: Europe

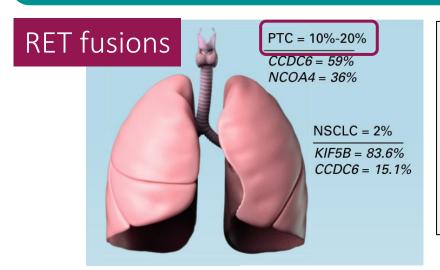
ESCAT = systematic framework to rank molecular targets based on evidence available supporting their value as clinical targets

ESMO

Scale of


Clinical

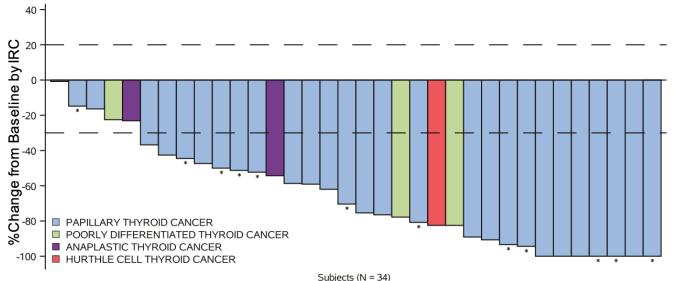
SPECIAL ARTICLE


Annals of Oncology, 2022

ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer

S. Filetti¹, C. Durante², D. M. Harti^{3,4}, S. Leboulleux^{5,6}, L. D. Locati^{7,8}, K. Newbold⁹, M. G. Papotti¹⁰ & A. Berruti¹¹, on behalf

Response and survival benefit for patients with actionable TC



Phase 1/2 LIBRETTO-001 trial (Cohort 1)

- N=42 pts with R/M RET fusion-positive TC
 - ➤ N=22 pre-treated with MKI (>1L)
 - ➤ N=12 MKI-naïve (1L)
- **Selpercatinib** 160 mg orally twice daily
- Median follow-up of 20.3 months

Sherman et al, #6073 ASCO 2021

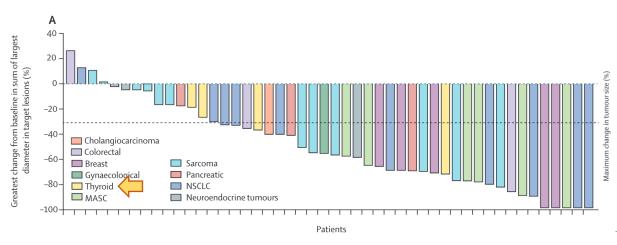
	>1L	1L
ORR (%)	77	92
CR (%)	9	33
PR (%)	68	58
mDoR (months)	18 (10-NE)	NE (15 – NE)
1-yr PFS (%)	69	100

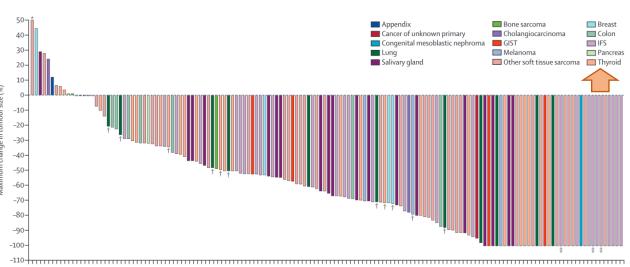
Response and survival benefit for patients with actionable TC

NTRK fusions

prevalence of NTRK fusion?

Phase 1/2 single arm trials (STARTRK-1/2 + 5) pooled analysis

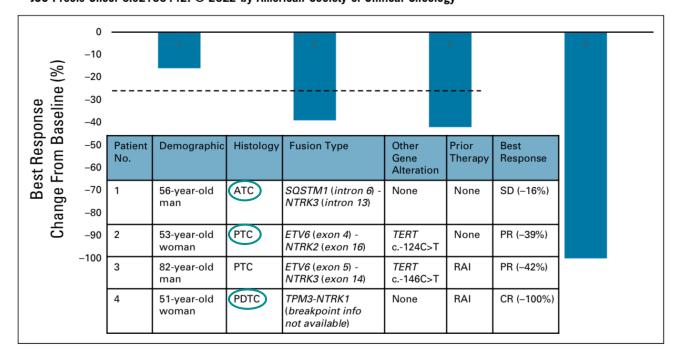

- Entrectinib 600 mg orally daily (single arm trials)
- ORR = 57%
- Median DoR = 10.4 months
- Median PFS = 11 months


Doebele et al, Lancet Oncology 2020

Phase 1/2 single arm trials (SCOUT, NAVIGATE + 3) pooled analysis

- Larotrectinib 100 mg orally twice daily
- ORR = 79%
- Median DoR = 35.2 months
- Median PFS = 28.3 months

Hong DS et al, Lancet Oncology 2020



NTRK fusions

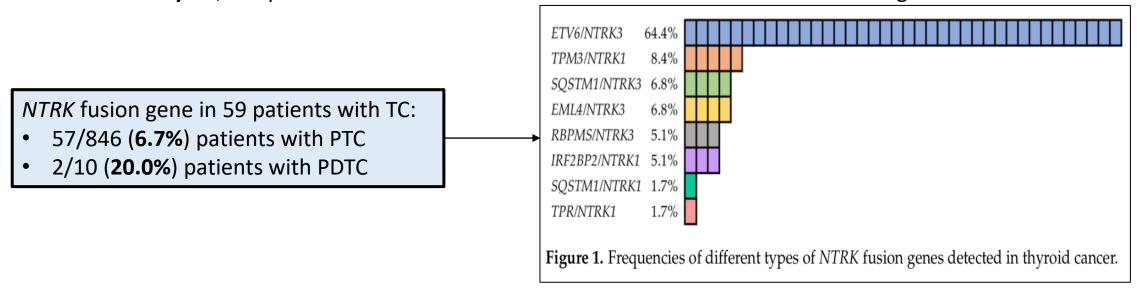
Real-World Experience of *NTRK*Fusion—Positive Thyroid Cancer

Jong Chul Park, MD¹; Arya Ashok, PhD²; Chienying Liu, MD³; and Hyunseok Kang, MD, MPH³ JCO Precis Oncol 6:e2100442. © 2022 by American Society of Clinical Oncology

FIG 1. Baseline clinicopathologic characteristics of four patients with *NTRK* fusion harboring thyroid cancer who were treated with larotrectinib, and waterfall plot for best response. ATC, anaplastic thyroid cancer; CR, complete response; PDTC, poorly differentiated thyroid cancer; PR, partial response; PTC, papillary thyroid cancer; RAI, radioactive iodine; SD, stable disease.

Types and frequencies of NTRK gene alterations

- 2.362 TC specimens identified in 3 U.S.A. databases (the AACR Genie, TCGA and Tempus)
- **51 patients** (2.2%) with NTRK1/NTRK3 fusion
- No NTRK2 fusions identified
- 10 different 5' fusion partner genes identified. Most frequent fusions:
 - ➤ 43% ETV6-NTRK3
 - 18% TPM3-NTRK1
 - ➤ 14% TPR-NTRK1
- Most frequent coalterations found
 - > 29% pTERT mutation
 - > 8% TP53 mutation


NTRK fusions

Article

NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis

Pekova B et al, Cancers, 2021

- **259** thyroid tissue samples analysed: 205 PTCs, 16 sporadic MTCs, 13 FTCs, 9 ATCs, 6 PDTCs, and 10 HCCs
- Samples positive for the BRAF, HRAS, KRAS, NRAS, RET, RET/PTC or PAX8/PPARg mutation were excluded from the further analyses; samples with TERT or TP53 mutations were included in further testing for NTRK fusion.

→ With a better selection of cases, the prevalence of NTRK fusion in thyroid carcinomas is higher than 2.2%

Response and survival benefit for patients with actionable TC

BRAF mutation in ATC

Phase 2 ROAR basket trial (NCT02034110)

- 36 pts with R/M BRAF mutant ATC
- Dabrafenib 150 mg BID + Trametinib 2 mg QD
- Primary endpoint: ORR; secondary: PFS, DoR, safety

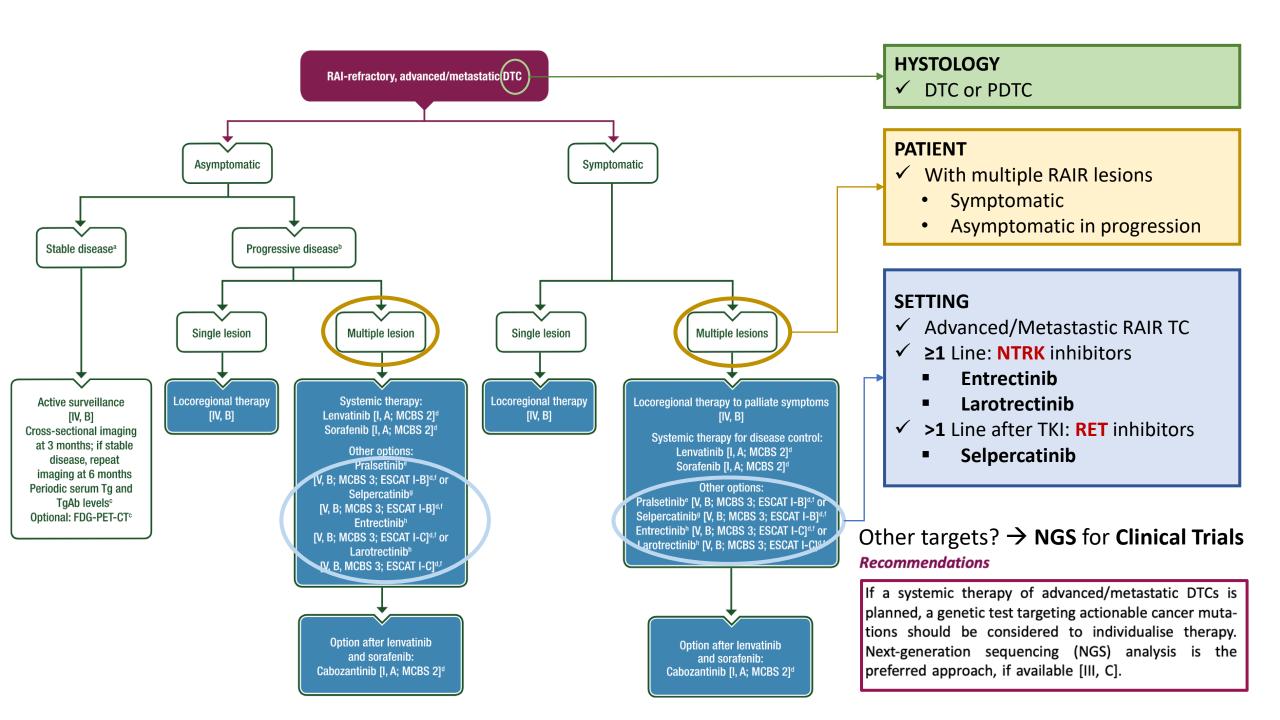
At a median follow-up of 11.1 months:

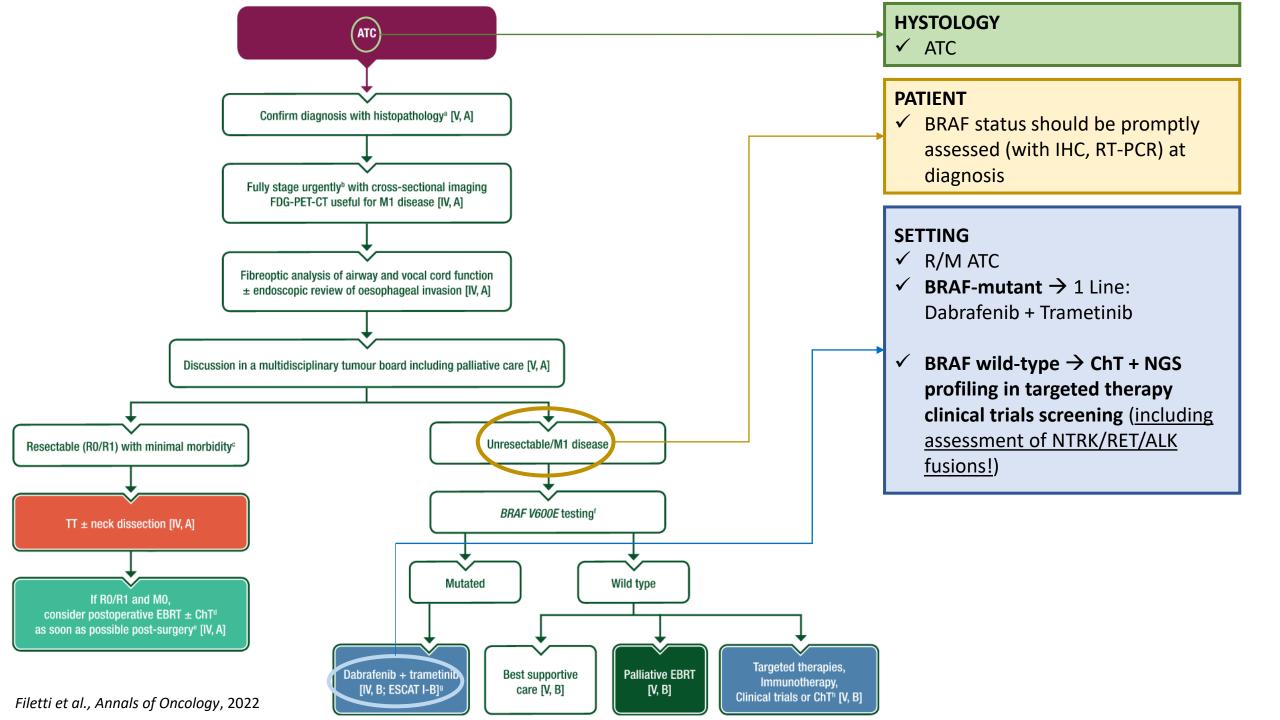
- ORR = 56% (3 complete responses)
- Median duration of response = 12 months
- Median overall survival = 15 months
- 24-months OS rate = 31.5%

Subbiah V. et al, Annals of Oncology 2022

BRAF mutation in DTC

Targeted therapy for BRAF-mutant DTC not mentioned in the ESMO Guidelines 2022

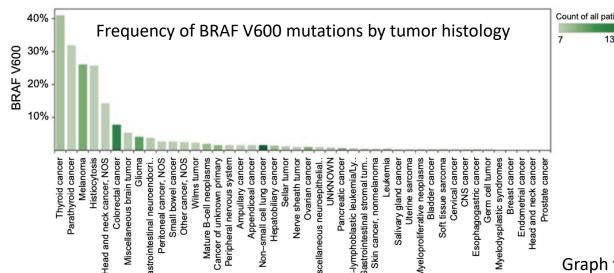



Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory Differentiated Thyroid Cancer: Results of a Randomized, Phase 2, Open-Label Multicenter Trial

- 53 patients
- 2 cohorts:
 - (1) Dabrafenib 150 mg BID (n=26)
 - (2) **Dabrafenib** 150 mg BID + **Trametinib** 2 mg QD (n=27)
- ORR within the first 24 weeks of tx:
 - > (1) 42% (95%CI 23 63%)
 - > (2) 48% (95%CI 29 68%)

$$p = 0.67$$

Busaidy et al, Thyroid, 2022



The "Atlantic gap" for targeted therapy in TC

updated at February 2023

Molecular alterations	Drugs	FDA	EMA	AIFA
BRAF ^{V600E} mutation	Dabrafenib plus Trametinib	(since June 2022) approved for R/M solid tumors in PD to standard treatment and without satisfactory treatment options	Not approved for thyroid cancer	 L.648 for ATC? (approved in June 2020 and suspended for compassionate use program ongoing) Compassionate use program for BRAF-mutant solid tumors closed since 15 Dec 2022

13,243

Graph from Adashek et al, Molecular Cancer Therapeutics 2022

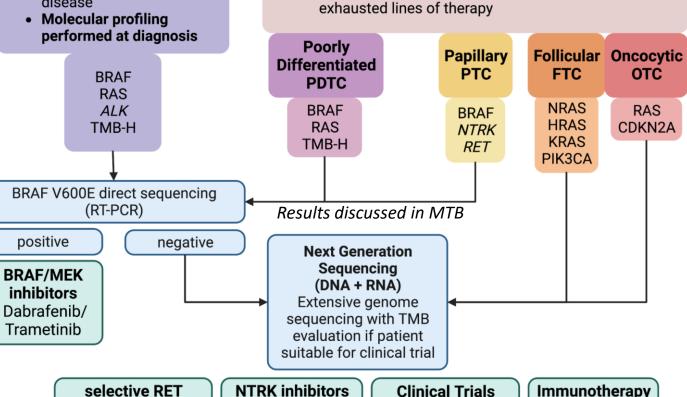
The "Atlantic gap" for targeted therapy in TC

updated at February 2023

Molecular alterations	Drugs	FDA	EMA	AIFA
BRAF ^{V600E} mutation	Dabrafenib plus Trametinib	(since June 2022) approved for R/M solid tumors in PD to standard treatment and without satisfactory treatment options	Not approved for thyroid cancer	 L.648 for ATC? (approved in June 2020 and suspended for compassionate use program ongoing) Compassionate use program for BRAF-mutant solid tumors closed since 15 Dec 2022
RET fusion	Selpercatinib Pralsetinib	in ≥1 Line in ≥1 Line	 Selpercatinib approved in >1 Line (after at least 1 line of MKI lenvatinib/sorafenib in DTC) Pralsetinib not approved for TC (the company withdrew EMA application on November 2022) 	
NTRK fusion	Entrectinib Larotrectinib	in ≥1 Line in ≥1 Line	• •	ed solid tumors expressing NTRK atisfactory treatment options

From theory to reality: TC profiling at INT

Sequential molecular profiling of advanced thyroid cancers for precision oncology: flowchart from an Italian referral center


Elena Colombo, Arianna Ottini, Francesca Caspani, Cristiana Bergamini, Carlo Resteghini, Salvatore Alfieri, Stefano Cavalieri, Imperia Nuzzolese, Matteo Duca, Biagio Paolini, Andrea Vingiani, Elena Tamborini, Federica Perrone, Giancarlo Pruneri, Laura D. Locati, Lisa Licitra

Anaplastic TC

- ECOG PS 0-2 (prognosis > 3 months)
- Inoperable locally advanced or metastatic disease
- Molecular profiling

inhibitors

Selpercatinib

Entrectinib

Larotrectinib

Differentiated TC

• ECOG PS 0-2 (prognosis > 3 months)

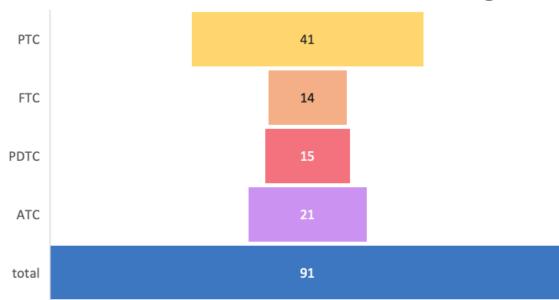
radioiodine-refractory disease

• Inoperable locally advanced or metastatic

• Contraindications to antiangiogenic therapy or

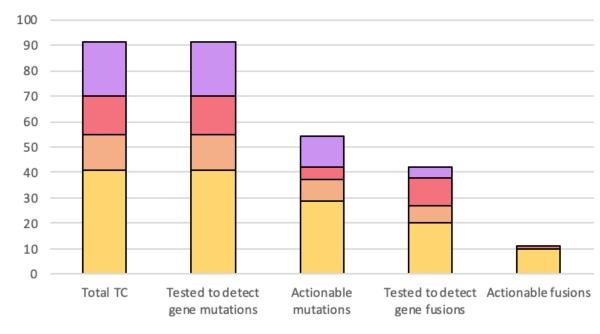
for TMB-H

solid tumors


From theory to reality: TC profiling in

From January 2020 to April 2022, **91** patients with TC received at least one molecular test:

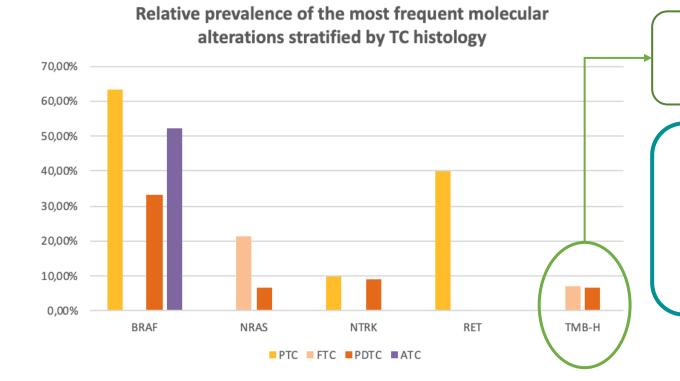
- 60/91 (65.9%) before starting 1st line therapy
- 31/91 (34%) after 1st line


n. Patients with TC offered molecular testing

F = 51 (56%) M = 40 (44%)

Analyses performed for each TC subtype and actionable molecular alterations found

From theory to reality: TC profiling in

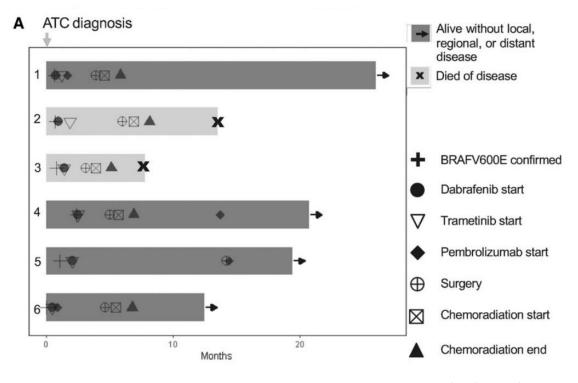


Most frequent molecular alterations found ———— fusions

mutations • 44% BRAF^{V600E}

9.9% NRAS

- 21.6% RET
- 7.3% NTRK



Tumor mutational burden was assessed in 5 cases: 2 had TMB > 10 Mut/Mb

Overall, 69.2% of this cohort had at least one molecular target potentially allowing access to targeted therapies in compassionate use programs/clinical trials

- 1. Move targeted therapy to early stage disease for neoadjuvant strategy
 - → Already feasible in the USA for **borderline resectable** BRAF^{V600E}-mutant **ATC**
- The successful use of neoadjuvant dabrafenib plus trametinib with or without immunotherapy has been described in a series of 6 patients.
- BRAF-directed therapy required continuation after surgery, to maintain control of the disease.
- All but one pts received adjuvant CTRT after surgery Outcomes:
 - √ 12-months OS= 83%
 - ✓ Locoregional control rate = 100%

Bible et al. Thyroid 2021

- 1. Move targeted therapy to early stage disease for neoadjuvant strategy
- 2. Associations of targeted therapy + immunotherapy

Meeting Abstract | 2020 ASCO Annual Meeting I

HEAD AND NECK CANCER

Atezolizumab combinations with targeted therapy for anaplastic thyroid carcinoma (ATC).

Maria E. Cabanillas, Ramona Dadu, Renata Ferrarotto, Suyu Liu, Bryan M. Fellman, Neil D. Gross, Maria Gule-Monroe, Charles Lu, Horiana Grosu, Michelle D. Williams, Dzifa Yawa Duose, Saradhi Mallampati, Shannon Dervin, Edward Francis Mckenna, Rui Jennifer Wang, Mark Zafereo, Naifa Lamki Busaidy

The University of Texas MD Anderson Cancer Center, Houston, TX; University of Texas MD

28% of patients were able to undergo complete tumour resection after response to systemic therapy (n=7 in cohort 1; n=1 in cohort 2)

Phase II – single institution

Study population:

Cohort 1 = BRAF V600E mutant ATC

→ Atezolizumab + Vemurafenib + Cobimetinib

Cohort 2 = BRAF^{WT} + RAS/NF1/NF2-mutant ATC

→ Atezolizumab + Cobimetinib

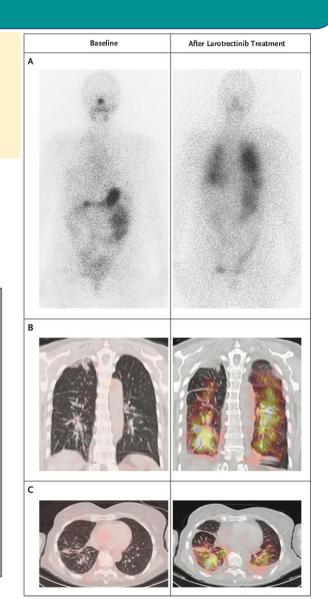
17 (50%)	
66 (44-74)	
N	Median OS in mos (95%CI)
17	Not reached
14	18.23 (4.47-NE)
	66 (44-74) N 17

- 1. Move targeted therapy to early stage disease for neoadjuvant strategy
- 2. Associations of targeted therapy + immunotherapy

Clinicaltrials.gov Identifier	Title	Phase	N	Population	Treatment Arms	Primary Endpoint
NCT04061980	Encorafenib/Binimetinib With or Without Nivolumab for Patients With Metastatic BRAF V600 Mutant Thyroid Cancer.	II	40	Histologically (or cytologically) confirmed diagnosis of metastatic, radioiodine (RAI) refractory, BRAFV600E/M mutant differentiated thyroid cancer (DTC)	Arm I: Encorafenib + Binimetinib Arm II: Encorafenib + Binimetinib + Nivolumab.	ORR
NCT04675710 ATC	Pembrolizumab in Combination With Dabrafenib and Trametinib as a Neoadjuvant Strategy Prior to Surgery in BRAF-Mutated Anaplastic Thyroid Cancer.	II	30	BRAFV600E mutation-positive anaplastic thyroid carcinoma surgically resectable.	Dabrafenib + Trametinib + Pembrolizumab.	Complete gross surgical resection (R0 or R1 resection) and OS

- 1. Move targeted therapy to early stage disease
- 2. Associations of targeted therapy + immunotherapy
- 3. Enhance radioiodine re-uptake?

The NEW ENGLAND JOURNAL of MEDICINE

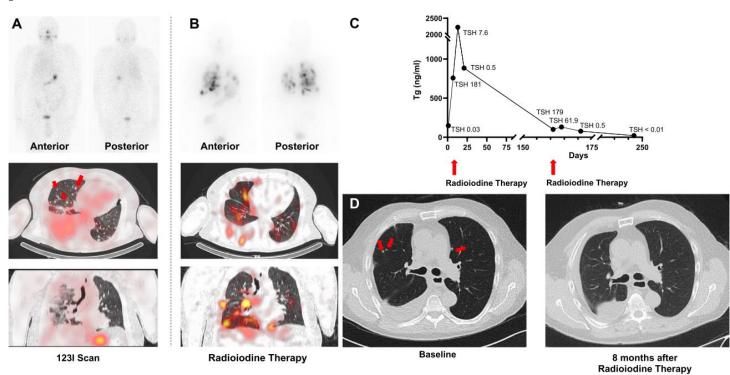

Groussin et al, NEJM 2020

Larotrectinib-Enhanced Radioactive Iodine Uptake in Advanced Thyroid Cancer

- 64 year-old female patient
- 34-year history of PTC with synchronous lymphnode and lung metastases
- After 8 RAI treatments (cumulative dose of 1405.4 mCi), long-term control of the cancer was maintained for 12 years.
- At PD with hight tumor burden, patient started Lenvatinib (partial response, but G3-G4 adverse events despite dose adjustments)
- NGS: EML4-NTRK fusion detected
- Larotrectinib (100 mg BID) → PR

Figure 1. Diagnostic Scans Obtained before and after Larotrectinib Treatment.

Images were obtained with the use of iodine-131 (300 to 370 MBq [8 to 10 mCi]) before treatment with larotrectinib and 3 weeks after the initiation of treatment. Anterior images of whole-body scans show restored iodine uptake after administration of larotrectinib in almost all lung metastases that had previously shown no uptake (Panel A). Substantially increased iodine uptake after larotrectinib treatment can also be observed in fused frontal (Panel B) and axial (Panel C) chest images.



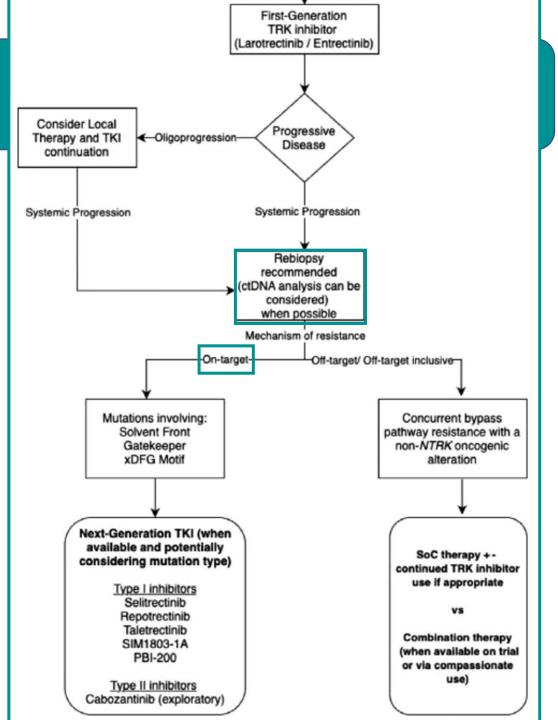
- 1. Move targeted therapy to early stage disease
- 2. Associations of targeted therapy + immunotherapy
- 3. Enhance radioiodine re-uptake?

Successful combination of selpercatinib and radioiodine after pretherapeutic dose estimation in RET-altered thyroid carcinoma

Werner RA et al, European J of Nuclear Medicine and Mol Imaging 2022

- RET-rearranged PTC → thyroidectomy + RAI
- Follow-up ¹²³I scan: no uptake in lung nodules identified on CT scan = RAIR DTC (A)
- Selpercatinib (15 months)
- Diagnostic whole-body ¹³¹I: intense radiotracer accumulation in sites of disease
- RAI with 9.4 GBq → previously negative nodules showed radiotracer accumulation on post-therapeutic scan (B).
- 13 days after RAI, a peak of Tg of 2.224 ng/ml was observed, followed by rapid decline (C)
- 8 months after RAI, Tg dropped from baseline 148 ng/ml under TSH suppression to 21 ng/ml with CT demonstrating reduction of lung nodules (D)

Rebiopsy for 2nd generation TKI


Besse et al, Mol Cancer Therapeutics - AACR 2021

Update on dose-escalation phase I/II clinical trial TRIDENT-1 With repotrectinib for TrkA/B/C – ROS1 – ALK rearranged solid tumors

in TRK TKI-naïve cohort
ORR 63% mDoR 1.9-7.4+ months
In TRK TKI-pretreated cohort
ORR 47% mDoR 1.9-15.1+ months

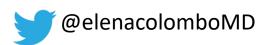
Early interim data led to Fast Track designation by the FDA for Repotrectinib in TRK TKI-pretreated patients

Harada G and Drilon A, Cancer Genetics 2022

Highlights

• **RET and NTRK inhibitors** are now standard-of-care in the advanced setting: **NGS RNA** molecular profiling can significantly improve the prognosis of patients with TC harboring these actionable targets.

 Multidisciplinary Team (MDT) and Molecular Tumor Board (MTB) are pivotal to optimize decisions on the timing, methodology and results of the molecular profiling for each patient



 Targeted therapy is now approved for unresectable/metastatic TC, but clinical trials are ongoing to evaluate the impact of targeted therapy in early-stage disease (neoadjuvant setting)

thank you!

elena.colombo@istitutotumori.mi.it

